UXDE dot Net Wordpress Themes

Temperature Sensors

in Transducers / 1 Comment

Transducer have been devised which produce either changes in voltage or change in impedance whenever the temperature changes. Temperature measurement sensors can be divided into two categories. They are – Measurement using change in resistance and measurement using change in voltage.

The temperature sensor that uses change in resistance to measure temperature is called a resistance thermometer. Resistance thermometer can be further classified into Resistance Temperature Detectors (RTD) and Thermistor.

The temperature sensors that use change in voltage to measure temperature are Thermocouple and Thermopile

Some other types of temperature sensors are

  1. Optical Pyrometer
  2. Radiation Pyrometer
  3. Thermowells
  4. Bimetallic Thermometer
  5. Filled System Temperature Measurement

Temperature Parameters

Before going into detail, it is important to know some of the basic temperature parameters and instrumentation systems.

  1. Range: The range of a temperature measuring device is the maximum and minimum temperature it can indicate, record, measure or transmit. The range should be decided in such a manner that the normal operating temperature is almost (50-70)% of the full scale with the maximum temperature range close to, but more than the upper range of scale.
  2. Span: The difference between the maximum and minimum values of temperature in the calibrated range is called span. It is always good to have very low values of span. The minimum span is the smallest range that the manufacturer can accurately calibrate within the device’s range.
  3. Turndown: It is the ratio of maximum measurable parameter to minimum measurable parameter.
  4. Immersion Length: The immersion length of a Thermowell is the distance between the free end/tip of the Thermowell and the point of immersion in the medium that is being measured.  The standard symbol for the immersion length of a Thermowell is “R”.
  5. Insertion Length: The insertion length of a Thermowell is the distance between the free end/tip of a Thermowell and (but not including) the external threads of other means of attachment to a vessel.  The standard symbol for the insertion length of a Thermowell is “U”.


The term ‘temperature’ can be defined in terms of heat. Heat is a measure of the energy contained in a body, which is due to the irregular motion of its molecules or atoms. The internal energy of body or gas increases with increasing temperature. Temperature is a variable which together with other parameters such as mass, specific heat etc. describe the energy content of a body. When energy in the form of heat is introduced to or extracted from a body, altered molecular activity will be made apparent as a temperature change.

To measure the value of temperature, some of the following phenomenon is needed.

  • Change in physical dimensions or characteristics of liquids, metals, or gases
  • Changes in electrical resistance
  • Thermoelectric effect
  • Radiant energy

Bimetallic Thermometer

In an industry, there is always a need to measure and monitor temperature of a particular spot, field or locality. The industrial names given to such temperature sensors are Temperature Indicators (TI) or Temperature Gauges (TG). All these temperature gauges belong to the class of instruments that are known as bimetallic sensors.

Two basic principles of operation is to be followed in the case of a bimetallic sensor. They are

  1. A metal tends to undergo a volumetric dimensional change (expansion/contraction), according to the change in temperature.
  2. Different metals have different co-efficient of temperatures. The rate of volumetric change depends on this co-efficient of temperature.


The device consists of a bimetallic strip of two different metals and they are bonded together to form a spiral or a twisted helix. Both these metals are joined together at one end by either welding or riveting. It is bonded so strong that there will not be any relative motion between the two. The image of a bimetallic strip is shown below.

Bimetallic Strip
                                                    Bimetallic Strip

A change in temperature causes the free end of the strip to expand or contract due to the different co-efficients of expansion of the two metals. This movement is linear to the change in temperature and the deflection of the free end can be read out by attaching a pointer to it. This reading will indicate the value of temperature. Bimetallic strips are available in different forms like helix type, cantilever, spiral, and also flat type.

The figure below shows the working of a bimetallic sensor. Two metals, blue and red are riveted together. If it is used in an oven, the red metal would expand faster than the blue metal. If it is used in a refrigerator, a rise in temperature causes the blue metal to expand faster than the red one. As a result the strip will bend upward and short circuits with a metal wore so that current begins to flow. If the size of the gap between the strip and the wire is adjusted, you can control the temperature.

Bimetallic Thermometer
                                      Bimetallic Thermometer

Bimetallic thermometers are generally available with 2, 3, 4, 5 or 6-inch concentric dials, preferably of the non-parallax type (i.e. not visually misaligned or displaced), with external zero adjustment, and 1/2-inch mounting thread.  The stem should be of Stainless Steel SS316), having a 1/4-inch diameter, and of a customized length to suit process requirements. The dial orientation may be bottom or back, known as “straight” or “angle”, respectively.  However, an all angle adjustable swivel connection is preferred in order to enable the dial to be read from the most convenient location.

 Bimetallic thermometers are not recommended for continued use above 420 degree Celsius. The thermal stability of the bimetallic thermometer is an inherent characteristic of the metals used and continued operation cannot be assured above 471°C.

Selection of Temperature Measurement Devices

Usually a given temperature measurement can be satisfactorily made by several different types of temperature sensing devices.  Ranges and capabilities of the various temperature measuring devices overlap in many instances. The following shall be used as guidelines for selection of Temperature Elements.

1. Bimetallic Thermometers

If the temperature to be measured is not required for automatic control, recording, or indication in the control room, a bimetallic thermometer should be used.

2. Filled System Thermometers

Occasionally a temperature transmitter, recorder and/or controller has to be installed in a location or under circumstances where electrical power is not available or inconvenient to use, while instrument air (at 20 psig or above) is present.  Under these circumstances, a filled system thermometer is an ideal choice because it can be combined with a commercially available pneumatic transmitter, recorder and/or controller.  If a local temperature measurement is in an inaccessible location so that a bimetallic thermometer cannot be easily read, a filled system thermometer is recommended because its capillary tubing can be led to an indicator that can be installed/located in a convenient place.

A liquid filled thermometer should be considered for corrosive areas or where vibration is a problem.

3. Thermocouples

Thermocouples are generally used for high temperature applications. At high temperatures there is a clear preference for thermocouples over RTDs. Project specific requirement should be checked before selection of Thermocouple or RTD for specific application.

4. Resistance Thermometers

Listed below is some temperature measurement applications for which the use of a RTD is normally preferred over a thermocouple:

  • Temperature of turbine inlet steam whose design temperature is close to the maximum allowable temperature for piping and equipment
  • Temperature of permanent turbine test points
  • Average temperature of nuclear reactor coolant
  • Average combustion turbine inlet air temperature
  • Condenser cooling water inlet to outlet temperature gain
  • Motor stator winding and bearing temperatures

Thermocouples are not suitable for narrow range temperature measurements.  This is because the change in the EMF developed by a thermocouple over a narrow temperature range is very small and difficult to measure.  Therefore, for narrow spans or small temperature differences a RTD is recommended.

MEMS Accelerometer

in Transducers / 3 Comments

MEMS Devices

Micro-electro-mechanical Systems (MEMS) Technology is one of the most advanced technologies that have been applied in the making of most of the modern devices like video projectors, bi-analysis chips and also car crash airbag sensors. This concept was first explained by Professor R. Howe in the year 1989. Since then many prototypes have been released and revised and has thus become an integral part of the latest mechanical products available in the market today.

During its early stage, the MEMS chip had two parts. One part included the main structure of the chip and the other part included everything needed for signal conditioning. This method was not successful as the total space taken by the device was larger, and thus the different parts of a single chip needed multi-assembling procedures. The output obtained from such a device had less accuracy and the mounting of such a device was difficult.

As the technology became more advanced the idea of integrating multi-chips was applied on to produce a single chip MEMS with high performance and accuracy.

The main idea behind this technology is to use some of the basic mechanical devices like cantilevers and membranes to have the same qualities of electronic circuits. To obtain such a concept, micro-fabrication process must be carried out. Though an electronic process is carried out, an MEMS device cannot be called as an electronic circuit. MEMS duplicate a mechanical part and have holes, cantilevers, membranes, channels, and so on. But an electronic circuit has a firm and compact structure. To make MEMS from silicon process, the manufacturer must have a deep knowledge in electronics, mechanical and also about the materials used for the process.


  1. MEMS device are very small and can be applicable for many mechanical purposes where large measurements are needed.
  2. The small size of the device has also helped in reducing its cost.
  3. If two or three different devices are needed to deploy a particular process, all of them can be easily integrated in an MEMS chip with the help of microelectronics. Thus, data reception, filtering, storing, transfer, interfacing, and all other processes can be carried out with a single chip.


  1. The device is highly applicable as an accelerometer, and thus can be deployed as airbag sensors or in digital cameras in order to stabilize the image.
  2. Can be used as a pressure sensor so as to calculate the pressure difference in blood, manifold pressure (MAP), and also tire pressure.
  3. It is commonly used in a gyroscope, DNA chips and also inkjet printer nozzle.
  4. Optical MEMS is used for making projectors, optical fiber switch and so on.
  5. RFMEMS is used for making antennas, filters, switches, relays, RAM’s microphones, microphones, and so on.

MEMS Accelerometer

An accelerometer is an electromechanical device that is used to measure acceleration and the force producing it. Many types of accelerometers are available in the market today. They can be divided according to the force (static or dynamic) that is to be measured. Even today, one of the most commonly used one is the piezoelectric accelerometer. But, since they are bulky and cannot be used for all operations, a smaller and highly functional device like the MEMS accelerometer was developed. Though the first of its kind was developed 25 years ago, it was not accepted until lately, when there was need for large volume industrial applications. Due to its small size and robust sensing feature, they are further developed to obtain multi-axis sensing.


One of the most commonly used MEMS accelerometer is the capacitive type. The capacitive MEMS accelerometer is famous for its high sensitivity and its accuracy at high temperatures. The device does not change values depending on the base materials used and depends only on the capacitive value that occurs due to the change in distance between the plates.

If two plates are kept parallel to each other and are separated by a distance‘d’, and if ‘E’ is the permitivity of the separating material, then capacitance produced can be written as

C0 = E0.E A/d = EA/d


A – Area of the electrodes

A change in the values of E, A or d will help in finding the change in capacitance and thus helps in the working of the MEMS transducer. Accelerometer values mainly depend on the change of values of d or A.

A typical MEMS accelerometer is shown in the figure below. It can also be called a simple one-axis accelerometer. If more sets of capacitors are kept in 90 degrees to each other you can design 2 or 3-axis accelerometer. A simple MEMS transducer mainly consists of a movable microstructure or a proof mass that is connected to a mechanical suspension system and thus on to a reference frame.

MEMS Accelerometer
                                                           MEMS Accelerometer

The movable plates and the fixed outer plates act as the capacitor plates. When acceleration is applied, the proof mass moves accordingly. This produces a capacitance between the movable and the fixed outer plates.

When acceleration is applied, the distance between the two plates displace as X1 and X2, and they turn out to be a function of the capacitance produced.

From the image above it is clear that all sensors have multiple capacitor sets. All upper capacitors are wired parallel to produce an overall capacitance C1 and the lower ones produce an overall capacitance of C2.

If Vx is the output voltage of the proof mass, and V0  is the output voltage produced between the plates, then

(Vx +V0) C1 + (Vx -V0) C2 = 0

We can also write

Vx =V0 [(C2-C1)/(C2+C1)] = (x/d) V0

The figure below shows the circuit that is used to calculate the acceleration, through change in distance between capacitor plates. The output obtained for different values of acceleration is also shown graphically.

Capacitor Type MEMS Accelerometer
                                        Capacitor Type MEMS Accelerometer

When no acceleration is given (a=0), the output voltage will also be zero.

When acceleration is given, such as (a>0), the value of value of Vx changes in proportion to the value of V0.

When a deceleration is given, such as (a<0), the signals Vx and Vy become negative. He demodulator produces an output equal to the sign of the acceleration, as it multiplies both the values of Vy and V0 to produce VOUT, which has the correct acceleration sign and correct amplitude.

The length of the distance, d and the proof mass weigh is surprisingly very small. The proof mass weighs no more than 0.1 microgram and the output capacitance is approximately 20 aF and the plate distance is no more than 1.3 micrometers.

We must select the device in reference to its noise characteristics. If the acceleration value at low gravity condition is to be found out, the noise characteristics could easily affect its accuracy. An MEMS accelerometer is said to have three noise producing parameters – from the signal conditioning circuit, from the vibrations produced by the springs, and from the output measuring system.

MEMS Accelerometers – Applications

  1. MEMS sensors are being used in latest mobile phones and gaming joysticks as step counters, user interface control, and also for switching between different modes.
  2. Used in mobile cameras as a tilt sensor so as to tag the orientation of photos taken.
  3. To provide stability of images in camcorders and also to rotate the image to and fro when you turn the mobile.
  4. A 3D accelerometer is used in Nokia 5500 so as to provide easier tap and change feature by which you can change mp3’s by tapping on the phone when it is lying inside the pocket.
  5. Used to protect hard disk drives in laptops from getting damaged when the PC falls to the ground. The device senses the free fall and automatically switches off the hard disk.
  6. Used in car crash airbag sensors, where it senses the sudden negative acceleration and determines the correct time to open the airbag.
  7. Used in real-time applications like military monitoring, missile launching, projectiles, and so on.

Acceleration Transducer

in Transducers / 1 Comment

We have already discussed the working of a velocity transducer and in the topic it was explained that velocity is a time derivation of displacement and displacement is the time integral of velocity. Similarly, we can also say that acceleration is the time derivative of velocity. Thus, a velocity transducer/sensor is enough to measure acceleration. All you have to do is add a differentiator circuit to the transducer. The figure of an acceleration transducer is shown below.

Acceleration Transducer
                                                   Acceleration Transducer

The figure shows a velocity transducer with a moving coil placed in between two magnetic poles. In order to obtain a linear motion, a pivot is placed on the surface that supports tye coil. This device can be used to find both linear as well as non-linear acceleration. The output voltage is obtained according to the motion of the coil inside the magnetic field. This output voltage is given as the input of a differentiator circuit. The output voltage of a differentiator can be written as

eoutput = einput (R/(R+(1/jwc))

Over the frequency range where the value of resistance R is very small in comparison with reactance 1/wc of the capacitor, the equation can be written as

eoutput     = einput R/(R+(1/jwc))

              = kv Sin (wt).jwCR

eoutput    = kvw CR Cos (wt)

The equation shows that the output voltage is the time derivative of the input and leads the input by 90 degrees. Accordingly, the output voltage is a measure of the displacement.

Other Acceleration Transducers

Another commonly used acceleration transducer is the accelerometer. (Main Article: Accelerometer). This device is used to measure the measurable acceleration by an object instead of co-ordinate acceleration. A piezoelectric accelerometer is mostly used in industrial applications, where piezoelectric principle comes into work.Its other prototypes include Micro Electro-Mechanical System (MEMS) Accelerometer, Piezoresistive  and capacitive Acceleromter and so on.

Velocity Transducer

in Transducers / No Comments

A velocity transducer/sensor consists of a moving coil suspended in the magnetic field of a permanent magnet. The velocity is given as the input, which causes the movement of the coil in the magnetic field. This causes an emf to be generated in the coil. This induced emf will be proportional to the input velocity and thus, is a measure of the velocity. The instantaneous voltage produced is given by the equation

N – Number of turns of the coil
d∅/dt – Rate of change of flux in the coil

The voltage produced will be proportional to any type of velocities like linear, sinusoidal or random.

The damping is obtained electrically. Thus, we can assume a very high stability under temperature conditions. The basic arrangement of a velocity sensor is shown below.

Velocity Transducer Arrangement

The figure shows a moving coil kept under the influence of two pole pieces. The output voltage is taken across the moving coil. The moving coil is kept balanced for a linear motion with the help of a pivot assembly.

Velocity Transducer
                                                            Velocity Transducer

Measurement of Displacement Using Velocity Transducer
We know that velocity is the derivative of displacement with respect to time. Similarly, displacement is the time integral of velocity. Thus, a velocity transducer can be used to find the displacement of an object. All we have to do is add an integrating circuit to the velocity transducer arrangement. This is shown in the figure above.
You may also like: Acceleration Transducer
The output voltage (einput) of the transducer can be represented as the product of a constant k and the instantaneous velocity v. If the velocity varies sinusoidally according to its frequency f, and has a peak value V, then the output voltage can be written as

einput = kV2πft
Capacitor Reactance Xc = 1/2πfc

When the value of frequency f is too low, the value of Xc will be very large. So, the integrated output voltage, eoutput will be proportional to einput and so will also be proportional to the velocity v. When the value of frequency becomes high, the value of Xc will become small. Thus, the integrated output voltage can be written as

eoutput = einput/JwCR
eoutput = KV/wCR Sin(wt-90°)

This shows that the value of integrator output lags behind the value of the input voltage by 90 degrees. For a given value of velocity amplitude V, the integrator output is inversely proportional to frequency w.

Strain Gauge

in Transducers / 5 Comments

Strain Gauge is a passive transducer that converts a mechanical elongation or displacement produced due to a force into its corresponding change in resistance R, inductance L, or capacitance C. A strain gauge is basically used to measure the strain in a work piece. If a metal piece is subjected to a tensile stress, the metal length will increase and thus will increase the electrical resistance of the material. Similarly, if the metal is subjected to compressive stress, the length will decrease, but the breadth will increase. This will also change the electrical resistance of the conductor. If both these stresses are limited within its elastic limit (the maximum limit beyond which the body fails to regain its elasticity), the metal conductor can be used to measure the amount of force given to produce the stress, through its change in resistance.

Strain Gauge Transducer

The device finds its wide application as a strain gauge transducer/sensor as it is very accurate in measuring the change in displacement occurred and converting it into its corresponding value of resistance, inductance or capacitance. It must be noted that the metal conductor which is subjected to an unknown force should be of finite length.


Strain gauge transducers are broadly classified into two. They are

  1. Electrical Resistance Type Strain Gauge

In an electrical resistance strain gauge, the device consists of a thin wire placed on a flexible paper tissue and is attached to a variety of materials to measure the strain of the material. In application, the strain gauge will be attached to a structural member with the help of special cement. The gauge position will be in such a manner that the gauge wires are aligned across the direction of the strain to be measured. The wire used for the purpose will have a diameter between 0.009 to 0.0025 centimeters. When a force is applied on the wire, there occurs a strain (consider tensile, within the elastic limit) that increases the length and decreases its area. Thus, the resistance of the wire changes. This change in resistance is proportional to the strain and is measured using a Wheatstone bridge.

A simple Wheatstone bridge circuit is shown in the figure below. It can be set in three different ways such as – full bridge, half bridge or quarter bridge. A full bridge will have all four of its gauges active. The half bridge will have two of its gauges active and thus uses two precise value resistors. The quarter bridge will have only one gauge and the rest of the resistors will be precise in value.

Wheatstone Bridge
                Wheatstone Bridge

A full bridge circuit is used in applications where complimentary pair of strain gauges is to be bounded to the test specimen. In practice, a half bridge and full bridge circuit has more sensitivity than the quarter bridge circuit. But since, the bonding is difficult, a quarter bridge circuits are mostly used for strain gauge measurements. A full bridge circuit is said to be more linear than other circuits.

An external supply is given to the bridge as shown in the diagram. Initially, when there is no application of strain, the output measurement will be zero. Thus, the bridge is said to be balanced. With the application of a stress to the device, the bridge will become unbalanced and produces an output voltage that is proportional to the input stress.

The application of a full bridge and quarter bridge strain gauge circuit is shown in the figure below.

Quarter And Full Bridge Strain Gauge Circuit
                                 Quarter And Full Bridge Strain Gauge Circuit

A quarter bridge output corresponding to the application of a force is shown below. Initially, the circuit will be balanced without the application of any force. When a downward force is applied, the length of the strain gauge increases and thus a change in resistance occurs. Thus an output is produced in the bridge corresponding to the strain.

Quarter Bridge Strain Gauge Circuit-Working
                                  Quarter Bridge Strain Gauge Circuit-Working

The wire strain gauge can be further divided into two. They are bonded and unbonded strain gauge.

As shown in the figure below, an unbounded strain gauge has a resistance wire stretched between two frames. The rigid pins of the two frames are insulated. When the wire is stretched due to an applied force, there occurs a relative motion between the two frames and thus a strain is produced, causing a change in resistance value. This change of resistance value will be equal to the strain input.

Unbonded Strain Gauge
                            Unbonded Strain Gauge

A bonded strain gauge will be either a wire type or a foil type as shown in the figure below. It is connected to a paper or a thick plastic film support. The measuring leads are soldered or welded to the gauge wire. The bonded strain gauge with the paper backing is connected to the elastic member whose strain is to be measured.

Bonded Type Strain Gauges
                                        Bonded Type Strain Gauges

According to the strain to be measured, the gauges can be classified as the following.

  • Uniaxial/Wire Strain Gauge

The figure of such a strain gauge is shown above. It mostly uses long and narrow sensing elements so as to maximize the length of the strain sensing material in the desired direction. Gauge length is chosen according to the strain to be calculated.

Gauge Configurations

Gauge Configurations

  • Biaxial Strain Gauges

When the measurement of strain is to be done in two directions (mostly at right angles), this method is used. The basic structure for this is the two element 90 planar rosette or the 90 planar shear/stacked foil rosette. The gauges are wired in a Wheatstone bridge circuit to provide maximum output. For stress analysis, the axial and transfers elements have different resistances which can be selected that the combined output is proportional to the stress while the output of the axial element alone is proportional to the strain. The figure is given below.

  • Three Element Rosettes

It is divided into two types – three element 60delta rosette strain gauge and three element 45planar rectangular rosette. They are used in applications where both the magnitude and direction of the applied strains are to be found out. Both the figures are shown below. The 60 rosette is used when the direction of the principal strain is unknown. The 45 rosette is used to determine a high angular resolution, and when the principal strains are known.

    2.   Semiconductor Strain Gauge

This is the most commonly used strain gauge as a sensor, although the bonded type may also be used in stress analysis purposes. The bonded type is usually made in wafers of about 0.02 centimeters in thickness with length and resistance values nearly equal to the wire gauge. It uses either germanium or silicon base materials to be made available in both n-type or p-type. The p-type gauges have a positive gauge factor while the n-type gauges have a negative gauge factor. Temperature dependence of gauge factor is governed by the resistivity of the material. The large value of the gauge factor in semiconductor gauges is attributed to the piezoresistance effect in such materials.

Variable Inductance Type Strain Gauge

The basic arrangement of a variable inductance strain gauge is shown below. This type of strain gauge is very sensitive and can be used to measure small changes in length – as small as 1 millionth of an inch. Thus, it is highly applicable as a displacement transducer. The member whose strain is to be measured is connected to one end of a moveable iron armature. The long part of the armature is placed between the two cores with wires coiled in between. If the strain produced makes the armature move towards the left core (core 1), it increases the inductance of the left hand coil, that is, coil 1 and decreases the inductance of coil 2. These two coils produce the impedance Z1 and Z2 in the bridge circuit. This produces an output voltage E, which is proportional to the input displacement and hence proportional to the strain. This type of strain gauge is more accurate and sensitive than a resistive strain gauge. But, it is difficult to install the device as it is bulky and complex in construction.

Variable Inductance Type Strain Gauge
                                                   Variable Inductance Type Strain Gauge

Errors in Strain Gauge

Some of the main causes for errors and inaccuracy in the device reading are given below.

  • Temperature Variation – This can be one of the major causes of error in a strain gauge. It can easily change the gauge resistance and cause differential expansion between the gauge and the test piece, causing variation in the measurable strain.
  • Humidity – Humidity can affect the accuracy by the breakdown of insulation between the gauge and the ground point. It also causes electro-chemical corrosion of gauge wire due to electrolysis.
  • Small errors could be caused due to thermoelectric effect.
  • The gauge will be erroneous even due to small factors like zero drift, hysteresis effect and so on.
  • Magnetostrictive effect can also cause errors in strain gauges of ferromagnetic materials. It produces a small voltage fluctuation of almost 2 mill volts.

Strain Gauge Applications

1. Pressure Measurement

2. Acceleration Measurement

3. Temperature Measurement


in Transducers / No Comments

What is an Accelerometer?

An accelerometer is a transducer that is used to measure the physical or measurable acceleration that is made by an object. Co-ordinate acceleration cannot be measured using this device. (Refer: Acceleration Transducer)



An accelerometer is an electro-mechanical device that is used to measure the specific force of an object, a force obtained due to the phenomenon of weight exerted by an object that is kept in the frame of reference of the accelerometer.

In the case of static acceleration, the device is mainly used to find the degrees at which an object is tilted with respect to the ground. In dynamic acceleration, the movement of the object can be foreseen.


The most commonly used device is the piezoelectric accelerometer. As the name suggests, it uses the principle of piezoelectric effect. The device consists of a piezoelectric quartz crystal on which an accelerative force, whose value is to be measured, is applied.

Due to the special self-generating property, the crystal produces a voltage that is proportional to the accelerative force. The working and the basic arrangement is shown in the figure below.

Piezoelectric Accelerometer
                       Piezoelectric Accelerometer

As the device finds its application as a highly accurate vibration measuring device, it is also called a vibrating sensor. Vibration sensors are used for the measurement of vibration in bearings of heavy equipment and pressure lines. The piezoelectric accelerometer can be classified into two. They are high impedance output accelerometer and low impedance accelerometer.

In the case of high impedance device, the output voltage generated in proportion to the acceleration is given as the input to other measuring instruments. The instrumentation process and signal conditioning of the output is considered high and thus a low impedance device cannot be of any use for this application. This device is used at temperatures greater than 120 degree Celsius.

The low impedance accelerometer produces a current due to the output voltage generated and this charge is given to a FET transistor so as to convert the charge into a low impedance output. This type of accelerometers is most commonly used in industrial applications.


In industrial applications, the most commonly used components to convert the mechanical action into its corresponding electrical output signal are piezoelectric, piezoresistive and capacitive in nature. Piezoelectric devices are more preferred in cases where it is to be used in very high temperatures, easy mounting and also high frequency rang e up to 100 kilohertz. Piezoresistive devices are used in sudden and extreme vibrating applications. Capacitive accelerometers are preferred in applications such as a silicon-micro machined sensor material and can operate in frequencies up to 1 kilohertz. All these devices are known to have very high stability and linearity.

Nowadays, a new type of accelerometer called the Micro Electro-Mechanical System (MEMS) Accelerometer is being used as it is simple, reliable and highly cost effective. It consists of a cantilever beam along with a seismic mass which deflects due to an applied acceleration. This deflection is measured using analog or digital techniques and will be a measure of the acceleration applied.

Accelerometer Specifications

  1. Frequency Response – This parameter can be found out by analyzing the properties of the quartz crystal used and also the resonance frequency of the device.
  2. Accelerometer Grounding – Grounding can be in two modes. One is called the Case Grounded Accelerometer which has the low side of the signal connected to their core. This device is susceptible to ground noise. Ground Isolation Accelerometer refers to the electrical device kept away from the case. Such a device is prone to ground produced noise.
  3. Resonant Frequency – It should be noted that the resonant frequency should be always higher the the frequency response.
  4. Temperature of Operation – An accelerometer has a temperature range between -50 degree Celsius to 120 degree Celsius. This range can be obtained only by accurate installment of the device.
  5. Sensitivity – The device must be designed in such a way that it has higher sensitivity. That is, even for a small accelerative force, the electrical output signal should be very high. Thus a high signal can be measured easily and is sure to be accurate.
  6. Axis – Most of the industrial applications requires only a 2-axis accelerometer. But if you want to go for 3D positioning, a 3-axis accelerometer will be needed.
  7. Analog/Digital Output – You must take special care in choosing the type of output for the device. Analog output will be in the form of small changing voltages and digital output will be in PWM mode.

Device Selection

Selection of the device depends on the following factors.

  1. Selection depends on the range of frequency you need.
  2. Depends on the size and shape of the object whose acceleration is to be measured.
  3. Whether the measurement environment is dirty or clean.
  4. Depends on the range of vibration that is to be measured.
  5. Depends on the range of temperature in which the device will have to work.
  6. Depends on whether the device is to be case grounded or grounded isolated.


  1. Machine monitoring.
  2. Used to measure earthquake activity and aftershocks.
  3. Used in measuring the depth of CPR chest compression.
  4. Used in Internal Navigation System (INS). That is, measuring the position, orientation, and velocity of an object in motion without the use of any external reference.
  5. Used in airbag shooting in cars and vehicle stability control.
  6. Used in video games like PlayStation 3, so as to make the steering more controlled, natural and real.
  7. Used in camcorder to make images stable.

Eddy Current Transducer

in Transducers / 3 Comments

Before going into depth about this transducer, it is important that you know about the theory of eddy currents.

Eddy Currents

Eddy currents, also known as “Focault Currents”, are currents induced in a conductor due to the magnetic field produced by the active coil. The conductor is placed in a changing magnetic field and the current is produced according to the change of magnetic field with time. The amount of eddy current produced will be more if the field strength is greater. When there is high field strength, the conductivity of the metal conductor increases, causing faster reversals of the field and hence more flow of eddy currents. Eddy currents will be produced in both conditions where either the conductor moves through a magnetic field or a magnetic field changes around a stationary conductor.  Even a small amount of the current will be produced in cases where a small change in magnetic field intensity is experienced on a conductor.

Like other currents in a conductor, eddy currents can also generate heat, EMF, and all types of losses. Its biggest disadvantage can be seen in a transformer, where power loss due to this, affects the device’s efficiency. This can be reduced by reducing the area of the conductor, or by laminating it. Since the insulator in the lamination area stops the electrons from moving forward, they will not be able to flow on wide arcs. Thus, they accumulate at the insulated ends and resist further accumulation of charges. This, in turn will reduce the flow of eddy currents. The amount of currents produced can also be reduced by using conductors having less electrical conductivity.

Eddy Current Transducer

This type of transducer is comparatively low in the measurement field and depends mostly on the quality of a high alternating source which is fed to a set of coils. One coil is called the active coil and the other provides temperature compensation (Compensating coil) by being the adjacent arm of a bridge circuit. A conducting material is kept close to the active coil so as to make it influenced by its absence or presence, or, by being any closer or away. Magnetic flux is induced in the active coil and is passed through the conductor producing eddy currents. The density of this current will be maximum at the surface and will lessen as the depth increases. This penetration depth can be calculated using the equation given below.

δ-Penetration Depth (m)
f-Frequency (Hz)
μ-Magnetci Permeability
σ-Electrical Conductivity (S/m)

 The circuit diagram of an eddy current transducer/sensor is shown below.

Eddy Current Transducer
                                                   Eddy Current Transducer


The active coil is kept closer to the conducting material and both of them are placed inside a probe. The compensating coil is kept further away from the conducting material. The high frequency source acts as the bridge circuit and feeds the coil across the two capacitors. The amount of eddy current produced becomes more as the distance between the conducting material and the active coil becomes less. This causes a change in the impedance of the active coil and thus unbalances the bridge circuit. The bridge circuit produces an output proportional to the amount of closeness between the conducting material and the active coil. The output of the bridge circuit is given to a low pass filter (LPF) and then its dc output is calculated. The high frequency allows a thin target to be used and also with this, the frequency response becomes good up to a target frequency 1/10th the supply frequency.

It should be noted that the diameter of the conducting material should be larger or at least same as that of a probe. If not, the output is prone to reduce linearity. If shafts are used as conducting materials, they should have a bigger diameter so that their curved surfaces effectively behaves as flat surfaces.


Since it is a non-contact device, it is suitable for higher resolution measurement applications. The device is used for finding out the position of an object that is conductive in nature.

  • Position Measurement

Since the output of an eddy current transducer represents the size of the distance between the probe and the conductor, the device can be calibrated to measure the position or displacement of the target. Thus, it can be applicable in monitoring or sensing the precise location of an object such as a machine tool. It can also be used to locate the final position of precise equipments such as a disk drive.

  • Vibrating Motion Measurement

The device is also suitable for finding the alternate positions of a vibrating conductor. Since a contact device is impracticable for this application, a non-contact device such as eddy current transducer is highly recommended. Thus, it can be applicable in measuring the distance of a shaft from a reference point or the to-and-fro movement of vibrating instruments.


  1. Measurement of distance can be carried out even in rough or mixed environments.
  2. Cost-effective.
  3. The device is insensitive to material in the gap between the probe and the conductor.
  4. The device is less expensive and has higher frequency response than a capacitive transducer.


  1. The result will be precise only if the gap between the probe and the conductor is small.
  2. The device cannot be used for finding the position of non-conductive materials. Another way is to connect a thick conductor onto the non-conductive material.
  3. There always occurs a non-linear relationship between the distance and impedance of the active coil of the device. This problem can be overcome only by calibrating the device at fixed intervals.
  4. The device is highly temperature sensitive. This can be overcome by adding a suitable balance coil to the circuit.

Magnetostrictive Transducer

in Transducers / 3 Comments


Magnetostriction can be explained as the corresponding change in length per unit length produced as a result of magnetization. The material should be magnetostrictive in nature. This phenomenon is known as Magnetostrictive Effect.  The same effect can be reversed in the sense that, if an external force is applied on a magnetostrictive material, there will be a proportional change in the magnetic state of the material. This property was first discovered by James Prescott Joule by noticing the change in length of the material according to the change in magnetization. He called the phenomenon as Joule effect. The reverse process is called Villari Effect or Magnetostrictive effect. This effect explains the change in magnetization of a material due to the force applied. Joule effect is commonly applied in magnetostrictive actuators and Villari effect is applied in magnetostrictive sensors.

This process is highly applicable as a transducer as the magnetostriction property of a material does not degrade with time.

Magnetostriction Transducers

A magnetostriction transducer is a device that is used to convert mechanical energy into magnetic energy and vice versa. Such a device can be used as a sensor and also for actuation as the transducer characteristics is very high due to the bi-directional coupling between mechanical and magnetic states of the material.

This device can also be called as an electro-magneto mechanical device as the electrical conversion to its appropriate mechanical energy is done by the device itself. In other devices, this operation is carried out by passing a current into a wire conductor so as to produce a magnetic field or measuring current induced by a magnetic field to sense the magnetic field strength.


The figure below describes the exact working of a magnetostrictive transducer. The different figures explain the amount of strain produced from null magnetization to full magnetization. The device is divided into discrete mechanical and magnetic attributes that are coupled in their effect on the magnetostrictive core strain and magnetic induction.

Magnetostrictive Transducers
                                                 Magnetostrictive Transducers

First, considering the case where no magnetic field is applied to the material. This is shown in fig.c. Thus, the change in length will also be null along with the magnetic induction produced. The amount of the magnetic field (H) is increased to its saturation limits (±Hsat). This causes an increase in the axial strain to “esat”. Also, there will be an increase in the value of the magnetization to the value +Bsat (fig.e) or decreases to –Bsat (fig.a). The maximum strain saturation and magnetic induction is obtained at the point when the value of Hs is at its maximum. At this point, even if we try to increase the value of field, it will not bring any change in the value of magnetization or field to the device. Thus, when the field value hits saturation, the values of strain and magnetic induction will increase moving from the center figure outward.

Let us consider another instance, where the value of Hs is kept fixed. At the same time, if we increase the amount of force on the magnetostrictive material, the compressive stress in the material will increase on to the opposite side along with a reduction in the values of axial strain and axial magnetization.

In fig.c, there are no flux lines present due to null magnetization. Fig.b and fig.d has magnetic flux lines in a much lesser magnitude, but according to the alignment of the magnetic domains in the magnetostrictive driver. Fig.a also has flux lines in the same design, but its flow will be in the opposite direction. Fig.f shows the flux lines according to the applied field Hs and the placing of the magnetic domains. These flux fields produced are measured using the principle of Hall Effect or by calculating the voltage produced in a conductor kept in right angle to the flux produced. This value will be proportional to the input strain or force.


The applications of this device can be divided into two modes. That is, one implying Joule Effect and the other are Villari Effect.

  • In the case where magnetic energy is converted to mechanical energy it can be used for producing force in the case of actuators and can be used for detecting magnetic field in the case of sensors.
  • If mechanical energy is converted to magnetic energy it can be used for detecting force or motion.
  • In early days, this device was used in applications like torque meters, sonar scanning devices, hydrophones, telephone receivers, and so on. Nowadays, with the invent of “giant” magnetostrictive alloys, it is being used in making devices like high force linear motors, positioners for adaptive optics, active vibration or noise control systems, medical and industrial ultrasonic, pumps, and so on. Ultrasonic magnetostrictive transducers have also been developed for making surgical tools, underwater sonar, and chemical and material processing.

Piezoelectric Transducer

in Transducers / 7 Comments

A piezoelectric crystal transducer/sensor is an active sensor and it does not need the help of an external power as it is self-generating. It is important to know the basics of a piezoelectric quartz crystal and piezoelectric effect before going into details about the transducer.

Piezoelectric Quartz Crystal

A quartz crystal is a piezoelectric material that can generate a voltage proportional to the stress applied upon it. For the application, a natural quartz crystal has to be cut in the shape of a thin plate of rectangular or oval shape of uniform thickness.  Each crystal has three sets of axes – Optical axes, three electrical axes OX1, OX2, and OX3 with 120 degree with each other, and three mechanical axes OY1,OY2 and OY3 also at 120 degree with each other. The mechanical axes will be at right angles to the electrical axes. Some of the parameters that decide the nature of the crystal for the application are

  • Angle at which the wafer is cut from natural quartz crystal
  • Plate thickness
  • Dimension of the plate
  • Means of mounting

Piezoelectric Effect

The X-Y axis of a piezoelectric crystal and its cutting technique is shown in the figure below.

 X-Y Axes of a Piezoelectric Crystal

                                          X-Y Axes of a Piezoelectric Crystal

The direction, perpendicular to the largest face, is the cut axis referred to.

If an electric stress is applied in the directions of an electric axis (X-axis), a mechanical strain is produced in the direction of the Y-axis, which is perpendicular to the relevant X-axis. Similarly, if a mechanical strain is given along the Y-axis, electrical charges will be produced on the faces of the crystal, perpendicular to the X-axis which is at right angles to the Y-axis.

Some of the materials that inherit piezo-electric effect are quartz crystal, Rochelle salt, barium titanate, and so on. The main advantages of these crystals are that they have high mechanical and thermal state capability, capability of withstanding high order of strain, low leakage, and good frequency response, and so on.

A piezoelectric transducer may be operated in one of the several modes as shown in the figure below.

Piezoelectric Crystal
                                                    Piezoelectric Crystal

Piezoelectric Transducer

The main principle of a piezoelectric transducer is that a force, when applied on the quartz crystal, produces electric charges on the crystal surface.  The charge thus produced can be called as piezoelectricity. Piezo electricity can be defined as the electrical polarization produced by mechanical strain on certain class of crystals. The rate of charge produced will be proportional to the rate of change of force applied as input. As the charge produced is very small, a charge amplifier is needed so as to produce an output voltage big enough to be measured. The device is also known to be mechanically stiff. For example, if a force of 15 kiloN is given to the transducer, it may only deflect to a maximum of 0.002mm. But the output response may be as high as 100KiloHz.This proves that the device is best applicable for dynamic measurement.

The figure shows a conventional piezoelectric transducer with a piezoelectric crystal inserted between a solid base and the force summing member. If a force is applied on the pressure port, the same force will fall on the force summing member. Thus a potential difference will be generated on the crystal due to its property. The voltage produced will be proportional to the magnitude of the applied force.

Piezoelectric Transducer
                        Piezoelectric Transducer

Piezoelectric Transducer can measure pressure in the same way a force or an acceleration can be measured. For low pressure measurement, possible vibration of the amount should be compensated for. The pressure measuring quartz disc stack faces the pressure through a diaphragm and on the other side of this stack, the compensating mass followed by a compensating quartz.


  1. Due to its excellent frequency response, it is normally used as an accelerometer, where the output is in the order of (1-30) mV per gravity of acceleration.
  2. The device is usually designed for use as a pre-tensional bolt so that both tensional and compression force measurements can be made.
  3. Can be used for measuring force, pressure and displacement in terms of voltage.


  1. Very high frequency response.
  2. Self generating, so no need of external source.
  3. Simple to use as they have small dimensions and large measuring range.
  4. Barium titanate and quartz can be made in any desired shape and form. It also has a large dielectric constant. The crystal axis is selectable by orienting the direction of orientation.


  1. It is not suitable for measurement in static condition.
  2. Since the device operates with the small electric charge, they need high impedance cable for electrical interface.
  3. The output may vary according to the temperature variation of the crystal.
  4. The relative humidity rises above 85% or falls below 35%, its output will be affected. If so, it has to be coated with wax or polymer material.

Force Transducers

in Transducers / No Comments

The basic principle behind the measurement of force is – when a force is applied on an object, the object gets displaced. The amount of displacement occurred can be calculated using the various displacement transducers, and thus force measurement can be done. This is an indirect method for calculating force. Some of the direct methods for measuring force are given below.

Force Measurement Using Pressure

Force measurement through pressure can be done with two types of load cells. They are explained below.

1. Hydraulic Load Cell

As shown in the figure given below, the inside chamber of the device is filled with oil which has a pre-load pressure. The force is applied on the upper portion and this increases the pressure of the fluid inside the chamber. This pressure change is measured using a pressure transducer or is displayed on a pressure gauge dial using a Bourdon Tube.

Hydraulic Load Cell
                       Hydraulic Load Cell

When a pressure transducer is used for measuring the value, the load cell is known to be very stiff. Even at a fully forced condition, it will only deflect up to 0.05mm. Thus, this device is usually used for calculating forces whose value lies between 500N and 200KiloN. The force monitoring device can be placed at a distance far away from the device with the help of a fluid-filled hose. Sometimes there will be need of multiple load cells. If so, a totaliser unit has to be designed for the purpose.

The biggest advantage of such a device is that it is completely mechanical. There is no need of any electrical assistance for the device. They can also be used for calculating both tensile and compressive forces. The error percentage does not exceed more than 0.25% if the device is designed correctly.

The device will have to be calibrated according to the temperature in which it is used as it is temperature sensitive.

2. Pneumatic Load Cell

The working of a pneumatic load cell is almost same to that of a hydraulic load cell. The force, whose value is to be measured, is applied on one side of a piston and this is balanced by pneumatic pressure on the other side. The pressure thus obtained will be equal to the input force applied. The value is measured using a bourdon tube.

Pneumatic Load Cell

Pneumatic Load Cell

The pneumatic load cell has an inside chamber which is closed with a cap. An air pressure is built up inside the chamber until its value equals the force on the cap. If the pressure is increased further, the air inside the chamber will forcefully open the cap and the process will continue until both the pressures are equal. At this point, the reading of the pressure in the chamber is taken using a pressure transducer and it will be equal to the input force.

Other Force Measuring Systems

1. Elastic Devices

The strain gauge can be replaced with a Linear Voltage Differential Transformer (LVDT) inside a load cell to know the displacement of an elastic element. The device is best suitable for dynamic measurements as it has good features like high resolution and hysteresis.

Another device most suitable for the measurement of force in an elastic element is the capacitive load cell. With the device, the displacement can be calculated by measuring the capacitance. The sensor has two parallel plates with a small gap in between. According to the force applied on the device, there will be a change in length of the spring member, which in turn changes the gap distance between the plates and produces a proportional capacitance. This measured capacitance value will be proportional to the force applied.

Optical fibers can also be used to design an optical strain gauge to measure force. When a force is applied on the force summing member, it causes a change in length of the optical fibers that are bonded to the strain gauge. If the level of strain is different for two optical fiber strain gauges, then the phase difference between the monochromatic beams that strike the optical gauges will be proportional to the value of force applied.

For obtaining a displacement value of high resolution, a device called interference-optical load cell can be used. A Michelson Interferometer is used to measure the amount of force that has caused the change in shape of the fork-shaped spring. The highest amount of elastic deformation and along with it, the strain of the material need not be as large as in the case of the strain gauge load cell. The spring is made of quartz with very little temperature dependence.

2. Vibrating Elements

The principle of resonance is used in the force transducer of vibrating elements. If a tuning fork load cell is used, the transducer will have two parallel band plates connected at both ends and will be made to vibrate in opposite directions. The change in resonance thus caused will be proportional to the force applied. The transmission and reception of the signals are carried by two piezo-electric elements kept very close to the fork.