UXDE dot Net Wordpress Themes

Posts Tagged: "Acceleration Transducer"

Capacitance Transducer

in Transducers / 1 Comment

Capacitance Transducer

A capacitance pressure transducer is based on the fact that dielectric constants of liquids, solids and gases change under pressure. The figure below shows an arrangement of a cylindrical capacitor that can withstand large pressure. As the change in dielectric constant is quite small (only about ½ percent change for a pressure change of about 10 MPa), it is usable only at large change in pressure. Besides, the capacitance-pressure relation is non-linear and is affected by temperature variation. The measurement of this capacitance is done by a resonance circuit. The schematic is shown below. The oscillogram giving the variation of the output voltage with capacitance is also shown below.

You may also like: Electrical Pressure Transducers and Pressure Transducers

Pressure Measurement by Change in Dielectric Constant Using Resonance Circuit
Pressure Measurement by Change in Dielectric Constant Using Resonance Circuit

Capacitive Transducer

A basic capacitive transducer has already been explained (Refer: Capacitive Transducers). It consists of a pair of parallel plates with the middle plate moving with pressure and producing a differential capacitor system. The figure below shows a pressure gauge of this type. Spherical depression of the glass plate is less than 0.0025 centimetres. When a differential pressure exists, the thin steel diaphragm moves towards the low pressure side and the output voltage e0 measured as the difference of voltage e1 and e2 across the two capacitors formed with this movable plate is given by the equation

e0 = e1-e2 = Ex/d

x – Displacement of the diaphragm

d – Diameter

Capacitive Pressure Transducer
                                Capacitive Pressure Transducer

Such transducers are frequently used in pressure transmitter.

MEMS Accelerometer

in Transducers / 3 Comments

MEMS Devices

Micro-electro-mechanical Systems (MEMS) Technology is one of the most advanced technologies that have been applied in the making of most of the modern devices like video projectors, bi-analysis chips and also car crash airbag sensors. This concept was first explained by Professor R. Howe in the year 1989. Since then many prototypes have been released and revised and has thus become an integral part of the latest mechanical products available in the market today.

During its early stage, the MEMS chip had two parts. One part included the main structure of the chip and the other part included everything needed for signal conditioning. This method was not successful as the total space taken by the device was larger, and thus the different parts of a single chip needed multi-assembling procedures. The output obtained from such a device had less accuracy and the mounting of such a device was difficult.

As the technology became more advanced the idea of integrating multi-chips was applied on to produce a single chip MEMS with high performance and accuracy.

The main idea behind this technology is to use some of the basic mechanical devices like cantilevers and membranes to have the same qualities of electronic circuits. To obtain such a concept, micro-fabrication process must be carried out. Though an electronic process is carried out, an MEMS device cannot be called as an electronic circuit. MEMS duplicate a mechanical part and have holes, cantilevers, membranes, channels, and so on. But an electronic circuit has a firm and compact structure. To make MEMS from silicon process, the manufacturer must have a deep knowledge in electronics, mechanical and also about the materials used for the process.

Advantages

  1. MEMS device are very small and can be applicable for many mechanical purposes where large measurements are needed.
  2. The small size of the device has also helped in reducing its cost.
  3. If two or three different devices are needed to deploy a particular process, all of them can be easily integrated in an MEMS chip with the help of microelectronics. Thus, data reception, filtering, storing, transfer, interfacing, and all other processes can be carried out with a single chip.

Applications

  1. The device is highly applicable as an accelerometer, and thus can be deployed as airbag sensors or in digital cameras in order to stabilize the image.
  2. Can be used as a pressure sensor so as to calculate the pressure difference in blood, manifold pressure (MAP), and also tire pressure.
  3. It is commonly used in a gyroscope, DNA chips and also inkjet printer nozzle.
  4. Optical MEMS is used for making projectors, optical fiber switch and so on.
  5. RFMEMS is used for making antennas, filters, switches, relays, RAM’s microphones, microphones, and so on.

MEMS Accelerometer

An accelerometer is an electromechanical device that is used to measure acceleration and the force producing it. Many types of accelerometers are available in the market today. They can be divided according to the force (static or dynamic) that is to be measured. Even today, one of the most commonly used one is the piezoelectric accelerometer. But, since they are bulky and cannot be used for all operations, a smaller and highly functional device like the MEMS accelerometer was developed. Though the first of its kind was developed 25 years ago, it was not accepted until lately, when there was need for large volume industrial applications. Due to its small size and robust sensing feature, they are further developed to obtain multi-axis sensing.

Working

One of the most commonly used MEMS accelerometer is the capacitive type. The capacitive MEMS accelerometer is famous for its high sensitivity and its accuracy at high temperatures. The device does not change values depending on the base materials used and depends only on the capacitive value that occurs due to the change in distance between the plates.

If two plates are kept parallel to each other and are separated by a distance‘d’, and if ‘E’ is the permitivity of the separating material, then capacitance produced can be written as

C0 = E0.E A/d = EA/d

EA = E0EA

A – Area of the electrodes

A change in the values of E, A or d will help in finding the change in capacitance and thus helps in the working of the MEMS transducer. Accelerometer values mainly depend on the change of values of d or A.

A typical MEMS accelerometer is shown in the figure below. It can also be called a simple one-axis accelerometer. If more sets of capacitors are kept in 90 degrees to each other you can design 2 or 3-axis accelerometer. A simple MEMS transducer mainly consists of a movable microstructure or a proof mass that is connected to a mechanical suspension system and thus on to a reference frame.

MEMS Accelerometer
                                                           MEMS Accelerometer

The movable plates and the fixed outer plates act as the capacitor plates. When acceleration is applied, the proof mass moves accordingly. This produces a capacitance between the movable and the fixed outer plates.

When acceleration is applied, the distance between the two plates displace as X1 and X2, and they turn out to be a function of the capacitance produced.

From the image above it is clear that all sensors have multiple capacitor sets. All upper capacitors are wired parallel to produce an overall capacitance C1 and the lower ones produce an overall capacitance of C2.

If Vx is the output voltage of the proof mass, and V0  is the output voltage produced between the plates, then

(Vx +V0) C1 + (Vx -V0) C2 = 0

We can also write

Vx =V0 [(C2-C1)/(C2+C1)] = (x/d) V0

The figure below shows the circuit that is used to calculate the acceleration, through change in distance between capacitor plates. The output obtained for different values of acceleration is also shown graphically.

Capacitor Type MEMS Accelerometer
                                        Capacitor Type MEMS Accelerometer

When no acceleration is given (a=0), the output voltage will also be zero.

When acceleration is given, such as (a>0), the value of value of Vx changes in proportion to the value of V0.

When a deceleration is given, such as (a<0), the signals Vx and Vy become negative. He demodulator produces an output equal to the sign of the acceleration, as it multiplies both the values of Vy and V0 to produce VOUT, which has the correct acceleration sign and correct amplitude.

The length of the distance, d and the proof mass weigh is surprisingly very small. The proof mass weighs no more than 0.1 microgram and the output capacitance is approximately 20 aF and the plate distance is no more than 1.3 micrometers.

We must select the device in reference to its noise characteristics. If the acceleration value at low gravity condition is to be found out, the noise characteristics could easily affect its accuracy. An MEMS accelerometer is said to have three noise producing parameters – from the signal conditioning circuit, from the vibrations produced by the springs, and from the output measuring system.

MEMS Accelerometers – Applications

  1. MEMS sensors are being used in latest mobile phones and gaming joysticks as step counters, user interface control, and also for switching between different modes.
  2. Used in mobile cameras as a tilt sensor so as to tag the orientation of photos taken.
  3. To provide stability of images in camcorders and also to rotate the image to and fro when you turn the mobile.
  4. A 3D accelerometer is used in Nokia 5500 so as to provide easier tap and change feature by which you can change mp3’s by tapping on the phone when it is lying inside the pocket.
  5. Used to protect hard disk drives in laptops from getting damaged when the PC falls to the ground. The device senses the free fall and automatically switches off the hard disk.
  6. Used in car crash airbag sensors, where it senses the sudden negative acceleration and determines the correct time to open the airbag.
  7. Used in real-time applications like military monitoring, missile launching, projectiles, and so on.

Acceleration Transducer

in Transducers / 1 Comment

We have already discussed the working of a velocity transducer and in the topic it was explained that velocity is a time derivation of displacement and displacement is the time integral of velocity. Similarly, we can also say that acceleration is the time derivative of velocity. Thus, a velocity transducer/sensor is enough to measure acceleration. All you have to do is add a differentiator circuit to the transducer. The figure of an acceleration transducer is shown below.

Acceleration Transducer
                                                   Acceleration Transducer

The figure shows a velocity transducer with a moving coil placed in between two magnetic poles. In order to obtain a linear motion, a pivot is placed on the surface that supports tye coil. This device can be used to find both linear as well as non-linear acceleration. The output voltage is obtained according to the motion of the coil inside the magnetic field. This output voltage is given as the input of a differentiator circuit. The output voltage of a differentiator can be written as

eoutput = einput (R/(R+(1/jwc))

Over the frequency range where the value of resistance R is very small in comparison with reactance 1/wc of the capacitor, the equation can be written as

eoutput     = einput R/(R+(1/jwc))

              = kv Sin (wt).jwCR

eoutput    = kvw CR Cos (wt)

The equation shows that the output voltage is the time derivative of the input and leads the input by 90 degrees. Accordingly, the output voltage is a measure of the displacement.

Other Acceleration Transducers

Another commonly used acceleration transducer is the accelerometer. (Main Article: Accelerometer). This device is used to measure the measurable acceleration by an object instead of co-ordinate acceleration. A piezoelectric accelerometer is mostly used in industrial applications, where piezoelectric principle comes into work.Its other prototypes include Micro Electro-Mechanical System (MEMS) Accelerometer, Piezoresistive  and capacitive Acceleromter and so on.

Strain Gauge

in Transducers / 5 Comments

Strain Gauge is a passive transducer that converts a mechanical elongation or displacement produced due to a force into its corresponding change in resistance R, inductance L, or capacitance C. A strain gauge is basically used to measure the strain in a work piece. If a metal piece is subjected to a tensile stress, the metal length will increase and thus will increase the electrical resistance of the material. Similarly, if the metal is subjected to compressive stress, the length will decrease, but the breadth will increase. This will also change the electrical resistance of the conductor. If both these stresses are limited within its elastic limit (the maximum limit beyond which the body fails to regain its elasticity), the metal conductor can be used to measure the amount of force given to produce the stress, through its change in resistance.

Strain Gauge Transducer

The device finds its wide application as a strain gauge transducer/sensor as it is very accurate in measuring the change in displacement occurred and converting it into its corresponding value of resistance, inductance or capacitance. It must be noted that the metal conductor which is subjected to an unknown force should be of finite length.

Types

Strain gauge transducers are broadly classified into two. They are

  1. Electrical Resistance Type Strain Gauge

In an electrical resistance strain gauge, the device consists of a thin wire placed on a flexible paper tissue and is attached to a variety of materials to measure the strain of the material. In application, the strain gauge will be attached to a structural member with the help of special cement. The gauge position will be in such a manner that the gauge wires are aligned across the direction of the strain to be measured. The wire used for the purpose will have a diameter between 0.009 to 0.0025 centimeters. When a force is applied on the wire, there occurs a strain (consider tensile, within the elastic limit) that increases the length and decreases its area. Thus, the resistance of the wire changes. This change in resistance is proportional to the strain and is measured using a Wheatstone bridge.

A simple Wheatstone bridge circuit is shown in the figure below. It can be set in three different ways such as – full bridge, half bridge or quarter bridge. A full bridge will have all four of its gauges active. The half bridge will have two of its gauges active and thus uses two precise value resistors. The quarter bridge will have only one gauge and the rest of the resistors will be precise in value.

Wheatstone Bridge
                Wheatstone Bridge

A full bridge circuit is used in applications where complimentary pair of strain gauges is to be bounded to the test specimen. In practice, a half bridge and full bridge circuit has more sensitivity than the quarter bridge circuit. But since, the bonding is difficult, a quarter bridge circuits are mostly used for strain gauge measurements. A full bridge circuit is said to be more linear than other circuits.

An external supply is given to the bridge as shown in the diagram. Initially, when there is no application of strain, the output measurement will be zero. Thus, the bridge is said to be balanced. With the application of a stress to the device, the bridge will become unbalanced and produces an output voltage that is proportional to the input stress.

The application of a full bridge and quarter bridge strain gauge circuit is shown in the figure below.

Quarter And Full Bridge Strain Gauge Circuit
                                 Quarter And Full Bridge Strain Gauge Circuit

A quarter bridge output corresponding to the application of a force is shown below. Initially, the circuit will be balanced without the application of any force. When a downward force is applied, the length of the strain gauge increases and thus a change in resistance occurs. Thus an output is produced in the bridge corresponding to the strain.

Quarter Bridge Strain Gauge Circuit-Working
                                  Quarter Bridge Strain Gauge Circuit-Working

The wire strain gauge can be further divided into two. They are bonded and unbonded strain gauge.

As shown in the figure below, an unbounded strain gauge has a resistance wire stretched between two frames. The rigid pins of the two frames are insulated. When the wire is stretched due to an applied force, there occurs a relative motion between the two frames and thus a strain is produced, causing a change in resistance value. This change of resistance value will be equal to the strain input.

Unbonded Strain Gauge
                            Unbonded Strain Gauge

A bonded strain gauge will be either a wire type or a foil type as shown in the figure below. It is connected to a paper or a thick plastic film support. The measuring leads are soldered or welded to the gauge wire. The bonded strain gauge with the paper backing is connected to the elastic member whose strain is to be measured.

Bonded Type Strain Gauges
                                        Bonded Type Strain Gauges

According to the strain to be measured, the gauges can be classified as the following.

  • Uniaxial/Wire Strain Gauge

The figure of such a strain gauge is shown above. It mostly uses long and narrow sensing elements so as to maximize the length of the strain sensing material in the desired direction. Gauge length is chosen according to the strain to be calculated.

Gauge Configurations

Gauge Configurations

  • Biaxial Strain Gauges

When the measurement of strain is to be done in two directions (mostly at right angles), this method is used. The basic structure for this is the two element 90 planar rosette or the 90 planar shear/stacked foil rosette. The gauges are wired in a Wheatstone bridge circuit to provide maximum output. For stress analysis, the axial and transfers elements have different resistances which can be selected that the combined output is proportional to the stress while the output of the axial element alone is proportional to the strain. The figure is given below.

  • Three Element Rosettes

It is divided into two types – three element 60delta rosette strain gauge and three element 45planar rectangular rosette. They are used in applications where both the magnitude and direction of the applied strains are to be found out. Both the figures are shown below. The 60 rosette is used when the direction of the principal strain is unknown. The 45 rosette is used to determine a high angular resolution, and when the principal strains are known.

    2.   Semiconductor Strain Gauge

This is the most commonly used strain gauge as a sensor, although the bonded type may also be used in stress analysis purposes. The bonded type is usually made in wafers of about 0.02 centimeters in thickness with length and resistance values nearly equal to the wire gauge. It uses either germanium or silicon base materials to be made available in both n-type or p-type. The p-type gauges have a positive gauge factor while the n-type gauges have a negative gauge factor. Temperature dependence of gauge factor is governed by the resistivity of the material. The large value of the gauge factor in semiconductor gauges is attributed to the piezoresistance effect in such materials.

Variable Inductance Type Strain Gauge

The basic arrangement of a variable inductance strain gauge is shown below. This type of strain gauge is very sensitive and can be used to measure small changes in length – as small as 1 millionth of an inch. Thus, it is highly applicable as a displacement transducer. The member whose strain is to be measured is connected to one end of a moveable iron armature. The long part of the armature is placed between the two cores with wires coiled in between. If the strain produced makes the armature move towards the left core (core 1), it increases the inductance of the left hand coil, that is, coil 1 and decreases the inductance of coil 2. These two coils produce the impedance Z1 and Z2 in the bridge circuit. This produces an output voltage E, which is proportional to the input displacement and hence proportional to the strain. This type of strain gauge is more accurate and sensitive than a resistive strain gauge. But, it is difficult to install the device as it is bulky and complex in construction.

Variable Inductance Type Strain Gauge
                                                   Variable Inductance Type Strain Gauge

Errors in Strain Gauge

Some of the main causes for errors and inaccuracy in the device reading are given below.

  • Temperature Variation – This can be one of the major causes of error in a strain gauge. It can easily change the gauge resistance and cause differential expansion between the gauge and the test piece, causing variation in the measurable strain.
  • Humidity – Humidity can affect the accuracy by the breakdown of insulation between the gauge and the ground point. It also causes electro-chemical corrosion of gauge wire due to electrolysis.
  • Small errors could be caused due to thermoelectric effect.
  • The gauge will be erroneous even due to small factors like zero drift, hysteresis effect and so on.
  • Magnetostrictive effect can also cause errors in strain gauges of ferromagnetic materials. It produces a small voltage fluctuation of almost 2 mill volts.

Strain Gauge Applications

1. Pressure Measurement

2. Acceleration Measurement

3. Temperature Measurement

Accelerometer

in Transducers / No Comments

What is an Accelerometer?

An accelerometer is a transducer that is used to measure the physical or measurable acceleration that is made by an object. Co-ordinate acceleration cannot be measured using this device. (Refer: Acceleration Transducer)

Accelerometer

Accelerometer

An accelerometer is an electro-mechanical device that is used to measure the specific force of an object, a force obtained due to the phenomenon of weight exerted by an object that is kept in the frame of reference of the accelerometer.

In the case of static acceleration, the device is mainly used to find the degrees at which an object is tilted with respect to the ground. In dynamic acceleration, the movement of the object can be foreseen.

Working

The most commonly used device is the piezoelectric accelerometer. As the name suggests, it uses the principle of piezoelectric effect. The device consists of a piezoelectric quartz crystal on which an accelerative force, whose value is to be measured, is applied.

Due to the special self-generating property, the crystal produces a voltage that is proportional to the accelerative force. The working and the basic arrangement is shown in the figure below.

Piezoelectric Accelerometer
                       Piezoelectric Accelerometer

As the device finds its application as a highly accurate vibration measuring device, it is also called a vibrating sensor. Vibration sensors are used for the measurement of vibration in bearings of heavy equipment and pressure lines. The piezoelectric accelerometer can be classified into two. They are high impedance output accelerometer and low impedance accelerometer.

In the case of high impedance device, the output voltage generated in proportion to the acceleration is given as the input to other measuring instruments. The instrumentation process and signal conditioning of the output is considered high and thus a low impedance device cannot be of any use for this application. This device is used at temperatures greater than 120 degree Celsius.

The low impedance accelerometer produces a current due to the output voltage generated and this charge is given to a FET transistor so as to convert the charge into a low impedance output. This type of accelerometers is most commonly used in industrial applications.

Types

In industrial applications, the most commonly used components to convert the mechanical action into its corresponding electrical output signal are piezoelectric, piezoresistive and capacitive in nature. Piezoelectric devices are more preferred in cases where it is to be used in very high temperatures, easy mounting and also high frequency rang e up to 100 kilohertz. Piezoresistive devices are used in sudden and extreme vibrating applications. Capacitive accelerometers are preferred in applications such as a silicon-micro machined sensor material and can operate in frequencies up to 1 kilohertz. All these devices are known to have very high stability and linearity.

Nowadays, a new type of accelerometer called the Micro Electro-Mechanical System (MEMS) Accelerometer is being used as it is simple, reliable and highly cost effective. It consists of a cantilever beam along with a seismic mass which deflects due to an applied acceleration. This deflection is measured using analog or digital techniques and will be a measure of the acceleration applied.

Accelerometer Specifications

  1. Frequency Response – This parameter can be found out by analyzing the properties of the quartz crystal used and also the resonance frequency of the device.
  2. Accelerometer Grounding – Grounding can be in two modes. One is called the Case Grounded Accelerometer which has the low side of the signal connected to their core. This device is susceptible to ground noise. Ground Isolation Accelerometer refers to the electrical device kept away from the case. Such a device is prone to ground produced noise.
  3. Resonant Frequency – It should be noted that the resonant frequency should be always higher the the frequency response.
  4. Temperature of Operation – An accelerometer has a temperature range between -50 degree Celsius to 120 degree Celsius. This range can be obtained only by accurate installment of the device.
  5. Sensitivity – The device must be designed in such a way that it has higher sensitivity. That is, even for a small accelerative force, the electrical output signal should be very high. Thus a high signal can be measured easily and is sure to be accurate.
  6. Axis – Most of the industrial applications requires only a 2-axis accelerometer. But if you want to go for 3D positioning, a 3-axis accelerometer will be needed.
  7. Analog/Digital Output – You must take special care in choosing the type of output for the device. Analog output will be in the form of small changing voltages and digital output will be in PWM mode.

Device Selection

Selection of the device depends on the following factors.

  1. Selection depends on the range of frequency you need.
  2. Depends on the size and shape of the object whose acceleration is to be measured.
  3. Whether the measurement environment is dirty or clean.
  4. Depends on the range of vibration that is to be measured.
  5. Depends on the range of temperature in which the device will have to work.
  6. Depends on whether the device is to be case grounded or grounded isolated.

Applications

  1. Machine monitoring.
  2. Used to measure earthquake activity and aftershocks.
  3. Used in measuring the depth of CPR chest compression.
  4. Used in Internal Navigation System (INS). That is, measuring the position, orientation, and velocity of an object in motion without the use of any external reference.
  5. Used in airbag shooting in cars and vehicle stability control.
  6. Used in video games like PlayStation 3, so as to make the steering more controlled, natural and real.
  7. Used in camcorder to make images stable.

Capacitive Transducers

in Transducers / 10 Comments

To learn about a capacitive transducer, it is important to know the basics of a parallel plate capacitor. Being the simplest form of a capacitor, it has two parallel conducting plates that are separated to each other by a dielectric or insulator with a permittivity of Ε (for air). Other than paper, vacuum, and semi-conductor depletion region, the most commonly used dielectric is air.

Due to a potential difference across the conductors, an electric field develops across the insulator. This causes the positive charges to accumulate on one plate and the negative charges to accumulate on the other. The capacitor value is usually denoted by its capacitance, which is measured in Farads. It can be defined as the ratio of the electric charge on each conductor to the voltage difference between them.

The capacitance is denoted by C. In a parallel plate capacitor, C = [A*Er*9.85*1012 F/M]/d

A – Area of each plate (m)

d – Distance between both the plates (m)

Er – Relative Dielectric Constant

The value 9.85*1012 F/M is a constant denoted by Eo and is called the dielectric constant of free space.
From the equation it is clear that the value of capacitance C and the distance between the parallel plates,d are inversely proportional to each other. An increase of distance between the parallel plates will decrease the capacitance value correspondingly. The same theory is used in a capacitive transducer. This transducer is used to convert the value of displacement or change in pressure in terms of frequency.

You may also like: Capacitance Transducer

As shown in the figure below, a capacitive transducer has a static plate and a deflected flexible diaphragm with a dielectric in between. When a force is exerted to the outer side of the diaphragm the distance between the diaphragm and the static plate changes. This produces a capacitance which is measured using an alternating current bridge or a tank circuit.

Capacitive Transducer
                                 Capacitive Transducer

A tank circuit is more preferred because it produces a change in frequency according to the change in capacitance. This value of frequency will be corresponding to the displacement or force given to the input.

Advantages

  • It produces an accurate frequency response to both static and dynamic measurements.

Disadvantages

  • An increase or decrease in temperature to a high level will change the accuracy of the device.
  • As the lead is lengthy it can cause errors or distortion in signals.